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Abstract. This paper presents a theoretical unification of neuroeconomics with 

the Free Energy Principle (FEP) framework. We demonstrate that economic 

decision-making can be formulated as a variational inference problem where 

agents minimize expected free energy, balancing risk (aligning predictions with 

preferences) and ambiguity (reducing uncertainty). Our formal analysis 

establishes mathematical equivalence between divisive normalization in 

neuroeconomic models and precision-weighted prediction error minimization in 

active inference. We show how Expected Subjective Value Theory (ESVT) from 

neuroeconomics naturally emerges from the FEP under Gaussian assumptions, 

explaining context-dependent valuation, reference-dependence, and risk attitudes 

through a common computational mechanism and generative model. This 

unification has significant implications for artificial intelligence, providing 

computational principles for developing more human-like decision-making 

agents that balance exploration and exploitation in an information-theoretic way. 

By bridging Bayesian mechanics with divisive normalization, we provide a 

neurobiologically plausible foundation for economic behavior that encompasses 

both classical utility maximization and information-theoretic approaches to 

decision-making under uncertainty. By integrating thermodynamic principles of 

information processing, we demonstrate how economic decision-making 

operates under physical constraints, offering a theoretical foundation for AI 

systems that must optimize computational resources while managing uncertainty. 

Keywords: Expected subjective value, variational free energy, active inference, 

neuroeconomics, Bayesian mechanics. 

1 The Free Energy Principle as a Decision-Making Framework 

Active inference has expanded beyond neuroscience into diverse domains [1, 2, 3, 4, 5, 

6, 7], establishing itself as a unified framework for modeling decision-making under 

uncertainty. Its foundational principles—variational free energy minimization and 

belief updating through precision-weighted prediction errors [8]—provide mechanistic 

explanations for complex behaviors across multiple temporal scales. 

93

ISSN 1870-4069

Research in Computing Science 154(8), 2025pp. 93–107; rec. 2025-03-16; acc. 2025-05-07

mailto:smontanez@up.edu.mx


This method which can be read as a physics of sentience is known as the new and 

growing field of Bayesian mechanics [8]. What distinguishes this approach is its ability 

to simultaneously address perception, learning, and action within a single coherent 

theoretical structure, accommodating both optimal and seemingly suboptimal behaviors 

that challenge traditional modeling approaches [9]. This integrative capacity makes 

active inference particularly valuable for artificial intelligence, where systems must 

similarly balance perception, learning, and action within unified computational 

architectures [1]. While reinforcement learning approaches separate perception from 

action and require external reward signals, active inference offers AI a more cohesive 

computational framework where perception, learning, and action emerge from the 

single imperative of free energy minimization [1]. 

The free energy principle (FEP) offers a neurobiologically plausible foundation for 

economic behavior by unifying Bayesian decision theory with statistical physics and 

information-theoretic approaches to uncertainty [10]. This framework shares 

mathematical equivalence with predictive coding [11] and relates conceptually to the 

Helmholtz free energy in statistical physics [12, 13]. Its computational architecture—

minimizing the long-term average of sensory surprisal through an internal generative 

model—provides a principled basis for understanding both information processing and 

decision-making [14, 15, 16, 17]. 

Recent empirical evidence supports the role of dopamine in encoding precision of 

beliefs about optimal policies, demonstrating that humans employ hierarchical 

Bayesian inference to simultaneously determine both what they should do and how 

confident they should be a process that aligns more closely with active inference than 

with classical utility maximization [18]. This framework extends Barlow's efficient 

coding hypothesis [19], providing a formal basis for understanding economic decision-

making as optimized information processing under biological constraints. 

The application of FEP to economics has been limited despite its significant 

potential. While some research has applied these principles to temporal discounting 

[20] and bounded rationality [21], a formal connection between current neuroeconomic 

models and the FEP remains to be established. In this paper, we demonstrate that 

divisive normalization—a canonical neural computation central to Expected Subjective 

Value Theory (ESVT) [22] in neuroeconomics—emerges naturally from perceptual 

inference under the FEP. By proving this formal equivalence, we provide a theoretical 

foundation for understanding economic behaviors as manifestations of precision-

weighted prediction error minimization in the brain, laying a bioinspired roadmap for 

developing AI agents capable of human-like economic decision-making and planning 

under the same principled information-theoretic framework [16]. 

2 Thermodynamic Foundations of Decision-Making 

The minimization of complexity in free energy optimization has fundamental 

thermodynamic implications through Landauer's principle [23], which establishes a 

lower bound of 𝑘𝑇 ln (2) energy expenditure per bit erased. This physical constraint 

bridges information theory and thermodynamics, suggesting that cognitive efficiency 

has metabolic consequences. When economic agents employ parsimonious 
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representations of market dynamics, they reduce both complexity and associated 

energetic costs [24]. 

Under the FEP, neural information processing optimizes the trade-off between 

accuracy and complexity, manifesting biologically as the calibration of synaptic 

weights within hierarchical neural architectures [14]. This optimization process 

explains the prevalence of simplified heuristics and dimensionality reduction in 

successful economic strategies: such approaches preserve essential predictive power 

while minimizing metabolic expenditure [23] and stochasticity in choice [24]. 

The active inference framework formalizes this efficiency through precision-

weighted prediction errors, where Bayesian belief updating is dynamically modulated 

by confidence estimates [8, 14]. This precision-weighting mechanism creates effective 

information compression, enabling adaptive decision-making even under severe 

computational constraints [21]. Economic agents implementing this mechanism 

naturally balance exploration (uncertainty reduction) with exploitation (preference 

satisfaction) without requiring exhaustive computation [16]. 

This thermodynamic perspective clarifies why seemingly "irrational" economic 

behaviors may represent optimal solutions under biological constraints [25]. Rather 

than implementing general-purpose rationality, economic cognition leverages domain-

specific adaptations that exploit statistical regularities in environmental structure [26, 

27]. These adaptations can be understood as instantiating a form of "Neural 

Darwinism," where neural architectures implement anti-entropic mechanisms that 

maintain functional organization against thermodynamic dissipation [14]. 

The resulting agent-environment system forms a Markov blanket structure that 

maintains integrity amid environmental fluctuations [8]. This statistical separation 

between internal and external states provides a formal basis for bounded rationality in 

economics, where access to market information is necessarily limited and costly. By 

minimizing expected free energy, economic agents effectively push 

"thermodynamically uphill" against disorder, implementing computationally efficient 

solutions [16]. This formulation provides a principled foundation for understanding 

economic decision-making as optimal inference under physical and 

informational constraints. 

3 The Free Energy Principle and Active Inference 

3.1 The Free Energy Principle Explained 

The FEP posits that biological systems, including the human brain, strive to minimize 

free energy, which corresponds to reducing surprise or uncertainty by forming 

predictions about their environment [8, 10, 16]. This principle serves as a bridge 

between cognitive science and physics, suggesting that life, cognition, and evolution 

can be understood through a unified framework that aligns with variational principles 

such as Hamilton's principle of least action in classical mechanics [2]. 
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In active inference, the expected free energy (𝐺) quantifies the probabilistic 

divergence between anticipated trajectories and preferred outcomes, while accounting 

for uncertainty reduction. Formally, 𝐺(𝛼[𝜏]) represents the expected free energy of a 

policy or autonomous path 𝛼[𝜏], equivalent to an action functional 𝒜(𝛼[𝜏]). The FEP 

states that agents select paths that minimize 𝐺 formalized as [9]: 

𝛂[𝜏] = arg 𝑚𝑖𝑛𝛼[𝜏] 𝐺(𝛼[𝜏]), (1) 

Perceptual inference minimizes free energy 𝐹(𝑠,  𝛂) by updating internal states 𝛼: 

𝛂̇(𝜏) = (𝑄𝛼𝛼 − Γ𝛼)𝛻𝛼𝐹(𝑠,  𝛂). (2) 

This cyclical process creates a dynamic equilibrium between perception and action, 

formalized through the coupled equations [9]:  

𝛂̇(𝜏) = (𝑄𝛼𝛼 − Γ𝛼)𝛻𝛼𝐹(𝑠,  𝛂), (3) 

𝛂[𝜏] = arg 𝑚𝑖𝑛𝛼[𝜏] 𝐺(𝛼[𝜏]). (4) 

The closed perception-action loop implements an approximate Bayesian filtering 

scheme analogous to the Hamilton-Jacobi-Bellman (HJB) equation in continuous 

control, but uniquely optimizes both information gain and expected utility, explaining 

exploration-exploitation dynamics in economic decision-making [16, 18]. Active 

inference generalizes standard reinforcement learning by driving agents to minimize 

expected surprise rather than simply maximize rewards [28, 29]. This fundamental 

difference provides a more comprehensive framework for modeling decision-making 

 

Fig. 1. Perception-action cycle in active inference. The figure illustrates the circular causal 

relationship between a generative process (external) and generative model (internal) connected 

through observations and actions. The generative process 𝑝(𝜂, 𝑠) represents the true causal 

structure governing the external states 𝜂 and observations 𝑠, while the generative model 

𝑝(𝑠, 𝜂,  𝜋) embodies the agent's beliefs about how observations and hidden states are generated, 

parameterized by policy 𝜋. Perception corresponds to inferring external states from observations, 

while action (𝑢 |𝜋) influences the generative process according to policies inferred from the 

generative model. The joint distribution of the generative model factorizes as 𝑝(𝑠, 𝜂,  𝜋) =
𝑝(𝑠 |𝜂,  𝜋)𝑝(𝜂|𝜋)𝑝(𝜋), where 𝑝(𝑠 |𝜂,  𝜋) encodes the likelihood mapping, 𝑝(𝜂|𝜋) represents 

conditional beliefs about external states given policies, and 𝑝(𝜋) encodes prior beliefs over 

policies. This formulation instantiates active inference, where agents select policies that 

minimize expected free energy, thereby reducing the divergence between the generative process 

and generative model through perception and action [9]. 
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under uncertainty, where agents update beliefs and select actions to minimize surprise 

rather than merely accumulate rewards. 

3.2 Variational Free Energy  

When considering perceptual inference, we can express the variational free energy 

through the Kullback-Leibler (KL) divergence between an approximate posterior 

distribution 𝑞(𝜂) and the true posterior 𝑝(𝜂|𝑠) [30]:  

𝐾𝐿(𝑞(𝜂), 𝑝(𝜂|𝑠)) = ∫ 𝑞(𝜂) (ln
𝑞(𝜂)

𝑝(𝜂|𝑠)
) 𝑑𝜂, (5) 

By substituting the definition of conditional probability and taking logarithms [30]: 

𝐾𝐿(𝑞(𝜂), 𝑝(𝜂|𝑠)) = −𝐹 + ln 𝑝(𝑠), (6) 

where 𝐹 is the negative free energy. Assuming that 𝑞(𝜂) is a delta distribution, the 

negative free energy simplifies to [30]: 

 

Fig. 2. Active and Perceptual Inference. This diagram illustrates the dual optimization 

processes in biological and sentient systems. The left panel depicts the relationship between 

external states 𝜂 ⊂ 𝑥, sensory states (𝑠(𝜏)), and autonomous states 𝛂(𝜏), linked by a Markov 

blanket 𝑏 in current time 𝜏. The autonomous states 𝛂 = (𝑎, 𝜇) comprise active states 𝑎 ⊂ 𝑥,and 

internal states 𝜇 ⊂ 𝑥, while the blanket states 𝑏 = (𝑠, 𝑎) consist of sensory states 𝑠(𝜏) and active 

states 𝛂(𝜏), collectively creating a partition of states that separates internal from external states 

𝜂(𝜏). The top right panel shows Active Inference, where agents select policies 𝜋(𝜏) that minimize 

expected free energy 𝐺(𝛼[𝜏]), balancing risk (aligning with preferences) against ambiguity 

(reducing uncertainty). The expected free energy represents the difference between posterior and 

prior beliefs about external states, which can be decomposed into intrinsic value (information 

gain) and extrinsic value (preference satisfaction). The bottom right panel represents Perceptual 

Inference, where agents update beliefs through gradient flows that minimize variational free 

energy 𝐹(𝑠,  𝛂), optimizing the trade-off between accuracy and complexity. Here 𝑞(𝜂(𝜏) denotes 

the recognition density or approximate posterior distribution over external states at time 𝜏. The 

term 𝐹(𝑠,  𝛂) is this free energy functional, and 𝛻𝛼𝐹(𝑠,  𝛂) is its gradient with respect to internal 

states, with precision weighting 𝑄𝛼𝛼 and friction Γ𝛼 modulating the update speed. Together, these 

complementary processes enable adaptive self-organization through continual prediction and 

uncertainty minimization [8,9]. 
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𝐹 = ∫ 𝑞(𝜂) ln (
𝑝(𝑠|𝜂)

𝑞(𝜂)
) 𝑑𝜂 = ∫ 𝑞(𝜂)ln𝑝(𝑠|𝜂)𝑑𝜂 − ∫ 𝑞(𝜂)ln𝑞(𝜂)𝑑𝜂 . (7) 

This assumption implies that 𝑞(𝜂) = 𝛿(𝜂 − 𝜂̂), where 𝛿 is the Dirac delta function 

and 𝜂̂ represents a point estimate. This effectively transforms the variational problem 

into a maximum a posteriori (MAP) estimation, eliminating the entropy term 

− ∫ 𝑞(𝜂)𝑙𝑛𝑞(𝜂)𝑑𝜂 and simplifying the free energy formulation [8]. 

The expectation operator 𝔼𝑞 represents the weighted average with respect to the 

distribution 𝑞: 

𝐹 = 𝔼𝑞(𝜂) [ln (
𝑝(𝑠|𝜂)

𝑞(𝜂)
)] = ∫ 𝑞(𝜂) ln (

𝑝(𝑠|𝜂)

𝑞(𝜂)
) 𝑑𝜂. (8) 

If we define a generative model as 𝑚 = 𝑝(𝑠, 𝜂) = 𝑝(𝑠|𝜂) 𝑝(𝜂), then [9]: 

𝐹 = 𝔼𝑞(𝜂) [ln (
𝑞(𝜂)

𝑝(𝜂|𝑠)
)] − ln𝑝(𝑠), (9) 

where 𝑞(𝜂) = 𝑝(𝑠|𝜂), free energy reduces to surprise −𝑙𝑛𝑝(𝑠).  

Introducing policies the framework extends to active inference [9]:  

𝐹 = 𝔼𝑞(𝜂|𝜋) [ln (
𝑞(𝜂|𝜋)

𝑝(𝜂|𝑠, 𝜋)
)] − ln𝑝(𝑠|𝜋). (10) 

With time dependencies (𝜏), the expectation operator becomes [9]: 

𝔼𝑞(𝜂(𝜏)|𝜋[𝜏])[𝑓(𝜂(𝜏), 𝜋[𝜏])] = ∫ 𝑞(𝜂(𝜏)|𝜋[𝜏])𝑓(𝜂(𝜏), 𝜋[𝜏])𝑑𝜂(𝜏). (11) 

The expectation notation encapsulates the integration over all possible states [9]: 

𝐹(𝜋[𝜏]) = 𝔼𝑞 [ln 𝑞(𝜂(𝜏)) − ln 𝑝(𝜂(𝜏)) − ln 𝑝( 𝜋(𝜏)|𝜂(𝜏)))]. (12) 

This extension is often called "active inference" where the system not only infers 

hidden states but also selects policies that minimize expected free energy in the future. 

In active inference, the agent selects policies that are expected to minimize surprise (or 

maximize model evidence) in the future. This allows the framework to address not just 

perceptual inference but also decision-making and planning to fulfill their preferences 

or prior beliefs about desired states [16,31]. 

4 From Free Energy to Economics 

4.1 Optimal Encoding Strategy  

Steverson et al. [24] proposed that economic decision-making can be formalized as an 

optimization problem balancing expected utility maximization against information-

processing costs. Making precise (non-stochastic) choices requires cognitive resources, 

which can be quantified using information theory. The optimization problem they 

propose takes the form: 

𝜌(𝑥, 𝐴) ∈ arg max ∑ 𝑝(𝑥)𝑣(𝑥) − 𝐶𝐴(∆𝐻(𝑝))𝑥∈𝐴 , (13) 
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where 𝜌(𝑥, 𝐴) is the probability of choosing option 𝑥 from choice set 𝐴, 𝑣(𝑥) is the 

value of option 𝑥, and 𝐶𝐴(∆𝐻(𝑝) represents the cognitive cost of reducing choice 

entropy. The entropy reduction term ∆𝐻(𝑝) measures deviation from random 

choice [24]: 

∆𝐻(𝑝) ≔ ln|𝐴| − 𝐻(𝑝), (14) 

where 𝐻(𝑝) is the Shannon entropy of the choice distribution:  

𝐻(𝑝) ≔ − ∑ [
𝑝(𝑥)

𝑝(𝐴)
] ln [

𝑝(𝑥)

𝑝(𝐴)
]

𝑥∈𝐴

, (15) 

Solving this optimization problem, the resulting choice probabilities follow the form: 

𝜌(𝑥, 𝐴) =
exp (

𝛾𝑣(𝑥)
𝜎 + 𝑣(𝐴)

)

∑ exp (
𝛾𝑣(𝑦)

𝜎 + 𝑣(𝐴)
)𝑦∈𝐴

. (16) 

This expression is structurally identical to a softmax over divisively normalized 

values [32], providing a formal derivation of context-dependent valuation. This 

derivation shows that divisive normalization emerges naturally when agents optimize a 

trade-off between maximizing value and minimizing cognitive costs. The divisive term 

in the denominator 𝜎 + 𝑣(𝐴) effectively normalizes option values based on the overall 

value of the choice set, just as neurons in the brain normalize their firing rates based on 

surrounding activity [24]. 

This optimization approach aligns with principles from active inference, where 

agents must minimize entropy to maintain a stable identity within fluctuating 

environments [2]. This can be formalized using the entropy of the probability 

distribution 𝑝(𝑠∗) of finding the agent in a given state 𝑠∗of its state space 𝑆∗ [1]: 

𝐻(𝑆∗) = ∫ (−ln𝑝(𝑠∗))𝑝(𝑠∗)𝑑𝑠∗𝑆∗

𝑠∗∈𝑆∗ , (17) 

where 𝑠∗can be replaced by observation space 𝑆. This entropy minimization 

corresponds precisely to the complexity term in the variational free energy functional, 

establishing a direct mathematical link between economic choice and the FEP 

framework. This connection has deep roots in statistical physics, where the Boltzmann 

distribution emerges as the probability distribution that minimizes Helmholtz free 

energy while maintaining a fixed average energy [1, 24]. The formal equivalence 

between thermodynamic systems and decision-making agents is not merely 

analogical—both involve systems that dynamically settle into probability distributions 

that optimize a free energy functional, subject to constraints [8, 13]. Just as physical 

systems minimize thermodynamic free energy to reach equilibrium, cognitive systems 

appear to minimize information-theoretic free energy to optimize behavior under 

constraints. Moreover, the entropy component parallels recent advances in 

reinforcement learning, where incorporating entropy regularization into reward 

objectives enhances algorithmic performance, stabilizes policy optimization, and 

improves generalization capabilities [2, 16]. 
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4.2 From Free Energy to Expected Utility Theory 

There is a clear path from the FEP to expected utility theory in economics. The FEP 

conceptualizes the world as a random dynamical system, with active inference 

explaining how self-organization emerges [8]. Within this framework, economic agents 

can be treated as adaptive systems whose behaviors are amenable to analysis through 

Bayesian mechanics [33]. This formulation offers a principled foundation for 

addressing unresolved challenges in economic decision-making, as it integrates 

effectively with recent advances in neuroeconomics through its accompanying neural 

process theory, enabling testable empirical predictions about neural responses [9]. 

When the epistemic value component is removed from the active inference 

framework, what remains is essentially the expected log probability of preferred 

outcomes. This is equivalent to maximizing expected utility (𝔼[𝑈𝐴]) in economic 

theory [8,34]: 

𝔼 ln 𝑝( 𝜋[𝜏])] ≅ 𝔼[𝑈𝐴] = ∑ 𝑃(𝑜|𝐴) 𝑈(𝑜)

𝑜𝜖𝑂

, (18) 

where 𝑃(𝑜|𝐴) represents the conditional probability of obtaining outcome o given 

action 𝐴, and 𝑈(𝑜) denotes the utility or value associated with each possible outcome 

𝑜 in the set 𝑂. Expected utility maximization emerges as a special case of active 

inference when uncertainty reduction is not prioritized [8]. 

Rational choice theory posits that decision-makers employ rational calculations to 

optimize outcomes aligned with their preferences. Within this framework, preferences 

over independent outcomes remain consistent regardless of irrelevant factors—a 

fundamental principle known as independence [35]. Von Neumann and Morgenstern 

[34] interpreted conditional probabilities as objective chances within a perfectly 

rational framework rather than as beliefs about states. Furthermore, rational choice 

theory assumes that options possess absolute values independent of the value or 

existence of alternative options [36]. Active inference provides a more general 

formulation by reinterpreting utility functions as prior preference distributions, 

suggesting that observed behavior can be understood as Bayes optimal under some prior 

beliefs [18]. 

4.3 Expected Subjective Value Theory: A Neuroeconomic Model 

Divisive normalization has emerged as a critical computation employed by the brain to 

facilitate decision-making. It functions as a canonical neural computation, contributing 

to efficient processing within neural circuits [32]. The work of Reynolds and Heeger 

[37] indicates that rectification can approximate a power law, resulting in contrast-

response functions that align more closely with electrophysiological data than previous 

assumptions [22, 36]. Research has posited that the brain utilizes divisive normalization 

in a utility-like calculation during choice-making, which entails balancing the expected 

value of options against the entropic cost of reducing stochasticity [38-39]. 

Glimcher and Tymula's biophysical implementation in Expected Subjective Value 

Theory (ESVT) [22]—a neuroeconomics-based model of expected utility—

demonstrate that normalization emerges from interacting excitatory and inhibitory 

neurons, described by coupled differential equations [22, 40]: 
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𝜏 
𝑑𝑅

𝑑𝑡
= −𝑅 +

𝑥

1 + 𝐺
, (19) 

𝜏 
𝑑𝐺

𝑑𝑡
= −𝐺 + 𝑅, (20) 

where 𝑅 represents excitatory activity, 𝐺 inhibitory activity, and 𝑥 the objective value 

of the payoff (utility). This system converges to a unique equilibrium state: 

𝜏 
𝑑𝐺

𝑑𝑡
= −𝐺 + 𝑅. (21) 

Two properties emerge: (1) this equilibrium state corresponds to standard divisive 

normalization, and (2) normalization arises from temporal integration of value inputs. 

In dynamic contexts, the action potential rate evolves as [22]:  

𝑅𝑡  ∝  
𝑥𝑡

𝑥𝑡 + ∑ 𝐷(𝑘)𝑥𝑘
𝑡−1
𝑘=0

, (22) 

where the denominator represents a weighting function 𝐷(𝑘) and a time-discounted 

average (∑ 𝐷(𝑘)𝑥𝑘
𝑡−1
𝑘=0 ) of previously encountered payoffs (𝑥𝑘)—effectively 

implementing reference-dependent valuation through neural computation [22]. This 

neurobiological implementation provides an understanding of how the brain might 

encode subjective values. As we will demonstrate in subsequent sections, this same 

normalization structure emerges from free energy minimization under specific 

assumptions. 

The core of ESVT is a subjective value function mapping objective payoffs to neural 

representations [22]: 

𝑆𝑡(𝑥) =
𝑥𝛼

𝑥𝛼 + 𝑀𝑡
𝛼 , (23) 

where 𝑆𝑡(𝑥) represents the subjective value of payoff 𝑥 ∈ ℝ at time 𝑡, which 

corresponds to the neural firing rate encoding the value representation. The term 𝑀𝑡 

denotes the payoff expectation based on previously experienced outcomes, 

implementing a form of reference-dependence that emerges from neurobiological 

architecture. The predisposition parameter 𝛼 controls the curvature of the value 

function, capturing individual differences in risk attitudes and value sensitivity, with 

lower values producing concave functions (risk aversion) and higher values yielding 

the characteristic sigmoid functions observed in prospect theory [22]. 

The payoff expectation is recursively computed as a time-weighted average of 

previous outcomes [22]: 

𝑆𝑡(𝑥) =
𝑥𝛼

𝑥𝛼+𝑀𝑡
𝛼, (24) 

where 𝛾 ∈ (0,1) represents the forgetting rate, capturing recency effects in 

expectation formation. 

This formulation produces a subjective value function bounded between 0 and 1, 

consistent with neurobiological constraints on value encoding. Critically, unlike 

traditional utility formulations, ESVT provides a cardinal measure of subjective value 

that corresponds directly to neural firing rates observed in valuation regions of the 
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brain. ESVT captures not just ordering but also the intensity or magnitude of 

preferences, allowing for more precise predictions about behavior [22]. 

In ESVT neuronal firing rates represent excitatory input modulated by surrounding 

activity parallels the precision-weighting mechanisms in perceptual inference [22]. 

Research indicates that dynamic divisive normalization operates not only spatially but 

also temporally, influencing how perceptual evidence is weighted over time during 

decision-making tasks [41]. The context-dependence of divisive normalization has 

been linked to behavioral features previously unnoticed by economists, suggesting that 

it can predict how individuals adapt their preferences based on reward contexts during 

reinforcement learning [36,42]. 

4.4 From Free Energy to Divisive Normalization 

In this section, we formally demonstrate that divisive normalization—the key 

computational mechanism in ESVT—emerges naturally from perceptual inference 

under the FEP framework, establishing a formal equivalence between these approaches. 

The FEP and ESVT both characterize how neural systems optimize information 

processing under biological constraints, though they emerged from different 

disciplinary traditions. Both frameworks describe neural systems that maximize 

information transmission while minimizing metabolic costs. While divisive 

normalization describes how neurons encode information about the world [32], this 

precisely corresponds to perceptual inference within the FEP framework [8]. 

We demonstrate that divisive normalization emerges from perceptual inference 

under the FEP by considering a hierarchical generative model with Gaussian priors and 

likelihoods. Let's consider the free energy under Gaussian assumptions [9, 30]: 

𝐹 = 𝐷𝐾𝐿[𝑞(𝜂|α)||𝑝(𝜂|𝑠)]-ln𝑝(𝑠). (25) 

At steady state (𝛼 = 0̇ ), internal states satisfy: 

𝛻𝛼𝐹(𝑠,  𝛂) = 0. (26) 

Under Gaussian assumptions for recognition and generative densities is [8]: 

𝑞((𝜂[𝜏]|𝛼[𝜏]) = 𝒩(𝜇𝜂 , Σ𝜂), (27) 

𝑝(𝜂[𝜏]|𝛼[𝜏]) = 𝒩(𝑔(𝜋[𝜏]), П𝜂
−1), (28) 

where П𝜂
−1 is the precision of prediction errors and Σ𝜂 is the covariance matrix (inverse 

of the precision matrix П𝜂). The gradient of free energy with respect to the conditional 

mean becomes: 

𝛻𝜇𝜂
𝐹 = П𝜂 (𝜇𝜂 − 𝑔(𝜋[𝜏])) − ∇𝜇𝜂

ℎ(𝜂)𝑇П𝑠(𝑠 − ℎ(𝑔(𝜋[𝜏]))). (29) 

Lemma 1. (Divisive Normalization Equivalence): Under a hierarchical generative 

model with Gaussian priors and likelihoods, perceptual inference through free energy 

minimization converges to a representation that is equivalent to divisive normalization 

as formulated in Expected Subjective Value Theory. 

Let a generative model be defined with Gaussian recognition density 

q((η[τ]|α[τ]) = 𝒩(μη, Ση) and generative density p(η[τ]|α[τ]) = 𝒩(g(π[τ]), Пη
−1). 
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At the steady state where ∇αF(s,  𝛂) = 0, the optimal internal representation μη takes 

the form: 

μη =
g(π[τ]) + ∑ ∇η μη

h(η)TПs(s − h(g(π[τ]))

1 + ∑ ∇η μη
h(η)TПs∇μη

h(η)
, (30) 

where the numerator represents direct input (predicted value), and the denominator 

represents a baseline term plus contextual modulation that implements precision-

weighted prediction error minimization. This representation is structurally equivalent 

to the divisive normalization formulation in ESVT [22]. 

Proof: Consider the variational free energy under Gaussian assumptions [9]: 

𝐹 = 𝐷𝐾𝐿[𝑞(𝜂|α)||𝑝(𝜂|s)]-ln𝑝(𝑠), (31) 

At steady state, internal states satisfy 𝛻𝛼𝐹(𝑠,  𝛂) = 0. The gradient of free energy 

with respect to the conditional mean is: 

𝛻𝜇𝜂
𝐹 = П𝜂 (𝜇𝜂 − 𝑔(𝜋[𝜏])) − ∇𝜇𝜂

ℎ(𝜂)𝑇П𝑠(𝑠 − ℎ(𝑔(𝜋[𝜏]))), (32) 

where П𝜂 is the precision of the prior (inverse covariance), 𝜇𝜂 is the conditional mean 

(posterior expectation), ℎ(𝜂)𝑇is the mapping from hidden states to observations, П𝑠 is 

the precision of sensory prediction errors, and (𝑠 − ℎ(𝑔(𝜋[𝜏]))) represents the sensory 

prediction error. This can be directly mapped to the ESVT’s divisive normalization 

equation [22]: 

𝑆𝑡(𝑥) =
𝑥𝛼

𝑥𝛼 + 𝑀𝑡
𝛼 , (33) 

with the following correspondences:  

𝑆𝑡(𝑥) ⟷ 𝜇𝜂  (neural activity encodes expected causes), 

𝑥𝛼 ⟷ 𝑔(𝜋[𝜏]) (direct input maps to prior prediction), 

𝑥𝛼 ⟷ 1 (baseline term maps to constant normalization factor), 

𝑀𝑡
𝛼 ⟷ ∑ ∇𝜂 𝜇𝜂

ℎ(𝜂)𝑇П𝑠∇𝜇𝜂
ℎ(𝜂) (contextual modulation maps to precision-

weighted prediction error terms). 

Therefore, divisive normalization in neural systems can be understood as 

implementing precision-weighted prediction error minimization as prescribed by 

the FEP. 

This equivalence explains both why divisive normalization appears throughout the 

nervous system and provides a theoretical foundation for understanding seemingly 

irrational economic behaviors as optimal inference under constraints. The metabolic 

efficiency principle aligns with our economic agent model, suggesting that context-

dependent valuation and reference-dependence emerge naturally from free energy 

minimization. By demonstrating this mathematical correspondence, we provide a 

mechanistic explanation for how Bayesian mechanics can describe economic choice. 
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5 Conclusion 

Our formal demonstration of mathematical equivalence between divisive normalization 

and free energy minimization under Gaussian assumptions establishes a fundamental 

principle of neural computation. Through Lemma 1, we proved that the steady-state 

solution to variational inference under the FEP yields precisely the divisive 

normalization model central to modern neuroeconomic models. This equivalence 

explains the pervasiveness of normalization across neural systems and reveals it not 

merely as an implementation detail, but as a necessary property of self-organizing 

systems maintaining integrity against environmental entropy. By establishing this 

bridge between neural implementation and economic theory, our analysis unifies ESVT 

[22] with active inference [9]. This unification has profound implications for artificial 

intelligence development, particularly for systems that require adaptive decision-

making and planning under uncertainty. 

The computational mechanisms we identify could lead to more efficient AI 

architectures that naturally balance exploration and exploitation, mirroring the 

specialized resource-constrained optimization that biological systems have evolved to 

implement. This integration aligns with Barlow's efficient coding hypothesis [19], 

demonstrating that the neural substrates of economic decision-making reflect 

computational imperatives constrained by biological reality. The precision-weighting 

mechanism explains how context-dependent valuation and reference-dependence 

emerge naturally from free energy minimization. Our framework explains the 

exploration-exploitation trade-off fundamental to economic decisions as the natural 

balance between ambiguity minimization and risk management within the active 

inference formalism. For AI, these principles provide a computational neuroscience 

foundation for designing systems that can adapt to context-dependent valuations and 

make decisions that appear irrational under classical utility theory yet are optimal when 

accounting for informational and computational constraints. AI agents implementing 

these principles could better model human economic behavior while also achieving 

greater computational efficiency through principled dimensionality reduction similar to 

what Barlow called “economy of though” [19]. 

This synthesis offers behavioral scientists a comprehensive framework for 

understanding decision-making that spans from computational principles to neural 

mechanisms. By adopting this perspective, researchers can develop more nuanced 

models of economic behavior that account for the cognitive processes underlying 

decision-making, particularly how agents navigate uncertainty through predictive 

modeling.  

Future AI research could leverage these insights to develop agents that not only 

maximize reward but actively maintain their internal model integrity through Bayesian 

mechanics, potentially leading to more robust and adaptive systems in complex, 

changing environments. Furthermore, future research should examine whether the 

correspondence we identified extends beyond Gaussian assumptions. The application 

of the FEP to economics enables a deeper understanding of economic behavior through 

the solid foundations of information theory and statistical mechanics, offering a 

roadmap for physics-informed and bioinspired AI that is simultaneously more human-

like in its decision processes and more principled in its computational implementation. 
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